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Received 5 July 2017 Aviv, Israel in November 2014 and subsequent discussions and updates. Lipids are an important

Accepted 31 August 2017 component of enteral and parenteral nutrition support and provide essential fatty acids, a concentrated

source of calories and building blocks for cell membranes. Whilst linoleic acid-rich vegetable oil-based
Keywords: enteral and parenteral nutrition is still widely used, newer lipid components such as medium-chain
Lipid emulsion triglycerides and olive oil are safe and well tolerated. Fish oil (FO)-enriched enteral and parenteral
Enteral nutrition . L. o . o .
Parenteral nutrition nutrition appears to be well tolerated and confers additional clinical benefits, partl;ulally in surgical
Sepsis patients, due to its anti-inflammatory and immune-modulating effects. Whilst the evidence base is not
Critical illness conclusive, there appears to be a potential for FO-enriched nutrition, particularly administered peri-
Surgery operatively, to reduce the rate of complications and intensive care unit (ICU) and hospital stay in sur-
gical ICU patients. The evidence for FO-enriched nutrition in non-surgical ICU patients is less clear
regarding its clinical benefits and additional, well-designed large-scale clinical trials need to be con-
ducted in this area. The ESPEN Expert Group supports the use of olive oil and FO in nutrition support in
surgical and non-surgical ICU patients but considers that further research is required to provide a more
robust evidence base.
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1. Nutrition support of the critically ill patient

* Based upon the ESPEN Workshop “Lipids in the ICU” held in Tel Aviv, Israel on Patients in an intensive care unit (ICU) are heterogeneous and
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X . . ;
Corresponding author. Faculty of Medicine, University of southampton, non-ventilated, obese or undernourished, preterm infants to older
Building, MP887 Southampton General Hospital, Tremona Road, Southampton SO16 . . . .
6YD, United Kingdom. adults, requiring either short-term or long-term intensive care [1].
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patient and to provide nutrients for the maintenance of lean body
mass as well as repair and maintenance of organ function and
support of defense and healing processes.

Enteral nutrition (EN) comprises specialized liquid nutrition
delivered through a nasogastric or post-pyloric feeding tube into
the stomach or small intestine (duodenum/jejunum), respectively
[2]. The European Society for Clinical Nutrition and Metabolism
(ESPEN) guidelines recommend that EN should be given to all ICU
patients who are not expected to be taking a full oral diet within
three days [3].

Whilst ESPEN acknowledges that there are no definitive data
supporting the early use of EN in terms of clinical outcomes, its
guidelines recommend that hemodynamically stable critically ill
patients who have a functioning gastrointestinal tract should be
fed early (<24 h) using an appropriate amount of feed [3]. Early
initiation of EN is also recommended by the American Society for
Parenteral and Enteral Nutrition (ASPEN) and the Canadian Society
of Critical Care Medicine (SCCM) [4], as well as the European So-
ciety of Intensive Care Medicine (ESICM) [5]. Administration of
early EN in critically ill patients appears to also have a positive
economic impact, with analysis suggesting that it is associated
with significantly reduced costs relating to reduction in ICU stay
and duration of mechanical ventilation compared with standard
care [6].

There are a number of nutritional and non-nutritional benefits
associated with early EN feeding. These include the maintenance of
lean body mass, gut integrity, mucosal associated lymphoid tissue
and muscle function, together with attenuation of oxidative stress
[7]. Studies performed after the publishing of ESPEN guidelines
have demonstrated positive clinical outcomes with early EN
administration, such as reduction in duration of mechanical
ventilation, reduction in length of ICU stay and higher survival rates
in critically ill mechanically-ventilated patients, compared
with delayed EN administration [8,9]. Furthermore, two meta-
analyses investigating early EN (<24 h) in critically ill and trauma
patients reported a significant mortality reduction versus standard
care and a significant reduction in incidence of pneumonia [10,11].

The macronutrient content of several EN formulas used in
clinical practice or in experimental studies is detailed in Table 1; it
is evident that these differ greatly in content of macronutrients and
in individual bioactive nutrients including glutamine, arginine and
omega-3 fatty acids. Hence the metabolic, physiologic and clinical
impact of different EN formulas will differ.

Parenteral nutrition (PN) is nutrition support provided through
intravenous administration of nutrients such as amino acids,
glucose, lipids (as emulsions), electrolytes, vitamins and trace ele-
ments. PN can be provided through a central venous line or through
a peripheral intravenous line [12]. The ESPEN Guidelines for

Parenteral Nutrition in Intensive Care recommend that all patients
who are not expected to be on normal nutrition within 3 days
should receive PN within 24—48 h, if EN is contraindicated or if they
cannot tolerate EN [13]. Furthermore, supplementary PN may also
be initiated alongside EN in critically ill patients to help achieve
energy and protein targets.

In terms of the safety of PN compared with EN in critically ill
patients, whilst PN is associated with a lower mortality risk,
particularly when compared to late EN, it has an increased risk of
infectious complications [14,15]. Compared to standard care (oral
diet when tolerated plus iv dextrose) in malnourished patients, EN
appears to be associated with a lower risk of infection, whilst PN
confers a lower risk of mortality as well as infection [16]. Supple-
mental PN may have clinical benefits in addition to reaching
nutritional targets earlier, such as reduced risk of nosocomial in-
fections when initiated on days 4—8 alongside EN compared to EN
alone [17]. However, a recent large scale multi-center randomized
controlled study compared EN to PN and found no significant dif-
ference in mortality and infectious complications [18].

2. Lipids in enteral and parenteral nutrition

Lipids are used in enteral and parenteral nutrition primarily due
to their high caloric content and are thus a good concentrated
source of energy. As such, they lower the amount of carbohydrate
that needs to be provided as part of the nutrition support. Lipids
also provide the building blocks for cell membranes and provide
essential fatty acids, thereby preventing essential fatty acid defi-
ciency. The two essential fatty acids are the omega-6 (n-6) poly-
unsaturated fatty acid (PUFA) linoleic acid (LA) and the omega-3 (n-
3) PUFA a-linolenic acid (ALA). In the body these may be converted
to longer chain, more unsaturated derivatives that have important
biological functions [19]. LA is the metabolic precursor of arach-
idonic acid (ARA) while ALA is the metabolic precursor of eicosa-
pentaenoic acid (EPA) and docosahexaenoic acid (DHA). The
absence of lipids in artificial nutrition support regimens can result
in the onset of essential fatty acid deficiency, especially in preterm
infants, where there is insufficient synthesis of the omega-3 fatty
acid DHA and the omega-6 fatty acid ARA from their essential
precursors [20]. Lipids also allow for delivery of fat soluble
vitamins.

Lipids used in nutrition support contain fats primarily in the
form of triglycerides, with either medium-chain fatty acids (cap-
rylic, capric, lauric and myristic acids), long-chain fatty acids (pal-
mitic, oleic, linoleic and a-linolenic acids) or very long chain fatty
acids (EPA and DHA) [19]. Table 2 details the nomenclature and
sources of fatty acids commonly used as a component of nutrition
support. Triglycerides rich in medium-chain fatty acids have been

Table 1
Macronutrient composition of EN formulas commonly used in research studies.
Oxepa' Pulmocare’ Ensure Plus HN?  Impact® Reconvan®
Protein (g/1) 63 63 63 56 55
Carbohydrate (g/1) 105 105 204 132 120
Fat (g/1) 93 93 49 28 33
(MCT, canola oil, (MCT, canola oil, corn oil, (MCT, canola (Palm kernel oil, high oleic (MCT, safflower oil,

fish oil, borage oil) high oleic safflower oil)

Omega-6 PUFAs (g/1) 184 184
Of which GLA (g/1) 43 0
Omega-3 PUFAs (g/1) 10 4.8

Of which EPA + DHA (g/1)
Also contains

6.5 0
Taurine, carnitine,
vitamin C, a-tocopherol,
B-carotene

a-tocopherol, B-carotene

Taurine, carnitine, vitamin C,

oil, corn oil) sunflower oil, high oleic flaxseed oil, fish oil)
safflower oil, fish oil)

7.7 5.8 6.9

0 0 0

1.5 33 34

0 1.7 2.5

Vitamin C, Arginine, nucleotides, vitamin C, Arginine, glutamine,

d-tocopherol a-tocopherol, B-carotene vitamin C, a-tocopherol,

B-carotene

Source: 'Abbott Nutrition company website; 2Taken from [68]; 3Taken from [202] and Nestlé Health Science company website; “Fresenius Kabi company website.
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Table 2

Fatty acids of importance in parenteral nutrition.
Fatty acid Shorthand 0il source

nomenclature

Caprylic acid 8:0 Coconut oil or palm kernel oil
Capric acid 10:0 Coconut oil or palm kernel oil
Lauric acid 12:0 Coconut oil or palm kernel oil
Myristic acid 14:0
Palmitic acid 16:0
Oleic acid 18:1n-9 Olive oil
Linoleic acid 18:2n-6 Vegetable seed oils e.g. soybean oil
a-Linolenic acid 18:3n-3 Vegetable seed oils e.g. soybean oil
Eicosapentaenoic acid  20:5n-3 Fish oil
Docosahexaenoic acid ~ 22:6n-3 Fish oil

termed medium-chain triglycerides or MCTs. Soybean oil (SO)
which is rich in linoleic acid, has been termed long-chain tri-
glycerides or LCTs, although strictly speaking any triglyceride
composed of long-chain fatty acids is a LCT. Fatty acid chain length,
and the presence, number and position of double bonds affect
physical, physiological and functional properties of the fatty acid
[19]. Hence, different fatty acids can influence, in different ways, a
number of different physiological processes such as metabolism,
inflammation, immune response, oxidative stress, blood coagula-
tion, organ function and wound healing [19].

The blend of lipids used in nutrition support has evolved over
time. This is well illustrated by considering the lipid emulsions
(LEs) used in PN (Fig. 1). The first generation of such LEs consisted
purely of SO, with the second generation LEs including MCTs and
the third generation beginning with the inclusion of structured
lipids and olive oil (OO). Most recently third generation LEs con-
taining fish oil (FO) have been introduced. Current commercially
available LEs used in PN are detailed in Table 3 and include: pure
SO; a 50:50 mixture of SO and MCTs (SO/MCT); inter-esterified SO
and MCTs; a 20:80 mixture of soybean and olive oils (SO/0O; this is
referred to herein as olive oil-based); a 40:50:10 mixture of SO,
MCTs and FO (SO/MCT/FO); a 30:30:25:15 mixture of SO, MCTs,
olive oil and FO (SO/MCT/OO/FO); and pure FO [21]. Additional
components of lipid PN formulations include varying amounts of
phytosterols (cholesterol-like structures that are present in plant
oils); a-tocopherol and other fat-soluble bioactives, depending on
the fat source; and phospholipids, usually phosphatidylcholine
(sometimes called lecithin), as an emulsifier.

The major physiological effects of the key fatty acids found in
different lipids are summarized elsewhere [19,22,23]. SO is a source
of the essential omega-6 PUFA LA, which comprises about 50% of
the fatty acids present and is the metabolic precursor of ARA. SO
also contains some (~7% of fatty acids) of the essential omega-3
PUFA ALA. Because it is a precursor of ARA, an excess of LA is
considered to promote inflammation, immunosuppression,

1st Generation 2" Generation 34 Generation

1960s 1980s 1990s 2000s

Fig. 1. Evolution of lipid emulsions for use in parenteral nutrition.

coagulation, and fatty liver (hepatic steatosis) [24], although
conclusive evidence for this is lacking. However, it is clear that high
amounts of LA do impair synthesis of the omega-3 PUFAs EPA and
DHA [25].

MCTs, a source of medium-chain saturated fatty acids usually
from coconut oil, are a good energy source whilst not affecting
blood triglyceride levels. They are ketogenic and protein sparing,
and are relatively resistant to peroxidation [26,27]. MCTs do not
appear to impair liver, immune or lung function [26,27]. However,
rapid infusion of such a lipid emulsion in patients suffering from
acute respiratory distress syndrome resulted in a deterioration of
lung function and hemodynamics [28].

00, a source of oleic acid, is relatively neutral in its physiological
effects, for example on immune function, inflammation and blood
coagulation [29]. Because of its high content of monounsaturated
fatty acids, OO is more resistant to peroxidation and oxidative stress
than SO. Importantly, OO also preserves hepatobiliary function [30].

FO, a good source of EPA and DHA, is anti-inflammatory and may
promote immune function and improve hepatic metabolism and
liver function, including reversal of intestinal failure-induced fatty
liver and cholestasis [19,23,31]. EPA and DHA also have anti-
coagulation and anti-arrhythmic effects, and oppose the actions
of omega-6 PUFAs [19,23]. However, being very long chain, highly
unsaturated fatty acids, both EPA and DHA are prone to
peroxidation.

Lipids provided in EN are subject to the normal intestinal pro-
cesses of digestion and absorption, with the products appearing in
the bloodstream as triglyceride components of chylomicrons. LEs in
PN bypass intestinal processes and so may be metabolized differ-
ently from lipoproteins originating from the gut. Once infused, the
LEs, comprising triglycerides stabilized with a shell of phospho-
lipids, acquire endogenous apoproteins that enable binding to and
activation of lipoprotein lipase [32]. The structure of LEs (i.e., their
fatty acid composition) appears to affect their rate of plasma
clearance and hence tissue uptake. Animal studies have demon-
strated that synthetic triglycerides comprising two medium chain
and one long chain fatty acid clear faster than either MCTs or LCTs
alone [33,34], an effect which is also observed in humans [35]. The
addition of FO to an SO/MCT emulsion (SO:MCT:FO 40:50:10)
resulted in faster plasma clearance than SO/MCT in both mice and
humans [36,37].

The hydrolysis of circulating triglycerides arising from either
enteral or parenteral lipid, yields free fatty acids that may enter
adjacent tissues or remain in the circulation. The essential omega-3
PUFA ALA is not well incorporated into membrane phospholipids.
However, the essential omega-6 PUFA LA, its metabolite ARA, and
the metabolites of ALA EPA and DHA are incorporated into cell
membrane phospholipids and into membrane lipid raft regions,
thereby affecting the structure and function of membrane-bound
proteins [19,21]. Thus these different PUFAs play a key role in cell
membrane structure and function, regulation of gene expression
and cell signaling pathways involved in apoptosis, metabolism,
inflammation, cell-mediated immunity, blood clotting and organ
function as well as synthesis of bioactive lipid mediators such as
eicosanoids and docosanoids [19,21,22]. Eicosanoids are signaling
molecules synthesized from 20-carbon PUFAs and include the
prostaglandins (PGs), thromoboxanes (TXs) and leukotrienes (LTs)
produced from ARA and EPA. Lipoxins produced from ARA and
resolvins produced from EPA are also eicosanoids. Docosanoids are
signaling molecules synthesized from 22-carbon PUFAs and include
the resolvins, protectins and maresins produced from DHA.

Once incorporated into cell membranes, the metabolism of
omega-6 and omega-3 PUFAs results in the production of eicosa-
noids and docosanoids that have differing roles in inflammation
and immune response, platelet aggregation smooth-muscle
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Table 3
Qil and typical fatty acid compositions (% of total) of commercially available lipid emulsions for use in parenteral nutrition.
Intralipid® Lipofundin® Structolipid® Omegaven® ClinOleic® Lipoplus® SMOFlipid®
MCT/LCT (also known as Lipidem®™)
Qil source 100% 50% MCT + 50% 36% MCT + 64% 100% fish® 80% olive + 20% 50% MCT + 40% 30% MCT + 30%
soybean soybean soybean soybean soybean + 10% fish" soybean + 25%
olive + 15% fish®
SFA 15 58 46 21 14 49 37
MUFA? 24 11 14 23 64 14 33
PUFA 61 31 40 56 22 37 30
n-3 PUFA 8 4 5 48 3 10 7
ALA 8 4 5 1 3 4 2
EPA - - — 20 - 3.5 3
DHA — — - 19 — 25 2
n-6 PUFA® 53 27 35 5 19 27 23

Information taken from [203—205].

SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; ALA, a-linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

¢ Mainly oleic acid.
> Mainly linoleic acid.

¢ The fatty acid composition of fish oil is more variable than that of vegetable oils so that the precise contribution of different fatty acids may differ in different batches.
Note that the fish oil used in Lipolus® is more concentrated in EPA and DHA than that used in SMOFLipid® so that 10% fish oil in Lipoplus® provides more EPA and DHA than

15% fish oil in SMOFLipid®.

contraction and so on [19]. The omega-6 PUFA ARA is metabolized
to pro-inflammatory lipid mediators such as the 2-series PGs and
TXs and the 4-series LTs [38,39]. It also gives rise to anti-
inflammatory and inflammation resolving lipoxins [40]. Preclini-
cal studies have highlighted the importance of lipid mediators
produced from ARA in sepsis. Direct inhibition of cyclooxygenase-2
and 5-lipoxygenase, enzymes involved in the synthesis of ARA-
derived pro-inflammatory mediators (PGs, TXs, LTs), results in
increased lipoxins which attenuate the inflammatory response and
protect from sepsis [41]. Furthermore, administration of ARA-
derived lipoxin A4 in a mouse model of sepsis increased survival
through reduction of systemic inflammation and blood bacterial
load [42]. The omega-3 PUFAs EPA and DHA compete with ARA and
result in synthesis of weaker pro-inflammatory 3-series PGs and
TXs and 5-series LTs [43]. EPA and DHA also give rise to resolvins
(both EPA and DHA), protectins and maresins (DHA only), which
play a key role in resolution of inflammation, reduction of tissue
injury and promotion of wound healing [44]. Resolvins reduce the
inflammatory response via decreasing neutrophil invasion, reduc-
tion of synthesis of pro-inflammatory cytokines via inhibition of
NF-kB, recruitment of monocytes, increased phagocytosis of
apoptotic neutrophils and facilitation of removal of macrophages
via the lymphatic system [44,45]. Rodent models have demon-
strated that the inflammation-resolving effect of DHA-derived
resolvin D2 is associated with increased survival in bacterial
sepsis [46]. Resolvin D2 was able to decrease local and systemic
bacterial burden, excessive cytokine production and neutrophil
recruitment, whilst increasing macrophage phagocytosis [46]. EPA
and DHA also exert an anti-inflammatory effect acting through
other mechanistic pathways, including suppression of nuclear
factor kappa B signaling via activation of the cell surface GPR120
protein and the intracellular receptor peroxisome proliferator
activated receptor v, and thus inhibition of production of a range of
pro-inflammatory cytokines, adhesion molecules, cyclooxygenase-
2, inducible nitric oxide synthase and matrix metalloproteinases
[19,43].

It is evident from the forgoing discussion that individual fatty
acids have unique functional properties and that different members
of the same fatty acid family (saturated, omega-6, omega-3) do not
share the same properties [19]. For this reason, it is important that
discussion of the role of the fatty acid composition of lipids to be
used in nutritional support of patients in the ICU (or elsewhere)
should focus on individual fatty acids rather than on fatty acid

families. Therefore, discussion of compositional properties such as
the omega-6 to omega-3 ratio is not valuable. This is because this
ratio can be altered in many different ways that may not have the
same functional or clinical impact. For example, the omega-3 fatty
acid component may be altered by using more ALA or by using
more EPA + DHA and the outcome from those two scenarios is
likely to be different. This is discussed further elsewhere [47,48].

3. Fish oil-enriched EN in critically ill patients

ESPEN guidelines state that an immune-modulating EN formula
enriched with arginine, nucleotides and omega-3 fatty acids is
superior to standard enteral formula in certain groups of patients,
i.e. upper gastrointestinal surgical patients, trauma patients and
patients with mild sepsis [3]. No benefit has been established in
patients with severe sepsis, in whom an immune-modulating for-
mula may be harmful and is therefore not recommended [3].
ASPEN and SCCM have previously issued similar guidelines [4], but
these have been modified recently and suggest that immune-
modulating enteral formulations (containing arginine with other
agents, including omega-3 fatty acids, glutamine and nucleic acids)
should not be used routinely in the medical ICU [49]. Consideration
for these formulations should be reserved for patients with trau-
matic brain injury and perioperative patients in the surgical ICU
[49].

Regarding critically ill patients with acute respiratory distress
syndrome (ARDS) and severe acute lung injury (ALI), ESPEN
guidelines state that such patients should receive an enteral
formulation characterized by an anti-inflammatory lipid profile (i.e.
omega-3 rich FO, borage oil) and antioxidants [3], a guideline
previously supported by ASPEN and SCCM [4]. However, in 2013,
the Canadian Clinical Practice Guidelines reviewed new study data
investigating the effect of such EN formulas in critically ill patients
with ALI/ARDS and downgraded the recommendation to “should be
considered” from “recommended” due to a diminished effect on
mortality risk [50]. Furthermore, ASPEN in 2016 decided not to
make any recommendation in this area [49]. Details of the studies
discussed in the following sections may be found in Table 4.

3.1. ALJ/ARDS

ARDS is characterized by diffuse pulmonary inflammation,
increased vascular permeability and edema [51,52]. Whilst a
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Table 4

Clinically relevant outcomes of studies using fish oil-enriched EN in critically ill patients.

Study Population Intervention
(Number
enrolled/included

in analysis)

EPA
(g/d)

DHA
(g/d)

GLA
(g/d)

Control Outcome in intervention group

Braga et al. 2002 [69] Major abdominal
surgery for GI
malignancy
(196/150)

ARDS

(22/17)

Peri- & post-operative
IMPACT®

Elamin et al. 2012 [59] Oxepa®

Gadek et al. 1999 [56] ARDS

(146/98)

Oxepa®

Grau-Carmona et al. 2011 [60]  Septic patients Oxepa®
with ALI/ARDS
(160/132)

Severe trauma

(120/99)

Kagan et al. 2015 [71] Oxepa®

Klek et al. 2011 [70] Major abdominal
surgery for GI
malignancy
(341/305)

ARDS secondary

to sepsis/septic shock

(165/103)

Post-operative
Reconvan®

Pontes-Arruda et al. 2006 [58] Oxepa®

Pontes-Arruda et al. 2011 [68]  Early stage Oxepa®
sepsis

(115/106)
ARDS/ALL

(272/272)

Rice et al. 2011 [61] Bolus FO + GLA

Singer et al. 2006 [57] ALl

(100/95)

ALl

(90/85)
Medical/surgical/
trauma ICU patients
(301/301)

Oxepa®

Stapleton et al. 2011 [62] Bolus FO

Van Zanten et al. 2014 [73] Experimental high
protein feed enriched
with glutamine,
omega-3 fatty acids &
antioxidants

~2.9 EPA + DHA 0

N/A

6.9

54

5.5

~5 EPA + DHA 0

49

4.6

6.8

54

9.8

| Number of complications
| Hospital length of stay

Post-operative
standard EN

Pulmocare® 1 Oxygenation

| Lung injury

| Organ dysfunction

1 ICU stay

1 Oxygenation

| Ventilator days

| New organ failure

1 ICU stay

1 Oxygenation

| New organ failure

| ICU stay

No effect on oxygenation,
incidence of ARDS/ALI, length
of ventilation time, length of ICU
stay or 28-day mortality

| Hospital stay

| Infectious complications

| Overall morbidity

| Overall mortality

Pulmocare® 1 Oxygenation

| New organ failure

| Ventilator days

1 ICU stay

| Mortality

| Progression of sepsis

| Respiratory and cardiac failure
1 ICU stay

No clinical benefit. Trial stopped
early due to fewer ventilator-free
and ICU-free days, and greater
60-day mortality in FO group

1 Oxygenation

| Ventilator duration

No effect on SOFA, ventilator

N/A N/A

2.9 5.8  Pulmocare®

2.3 49  Ensure Plus HN®

2.3 4.7  Pulmocare®

Post-operative
Peptisorb®

22 4.6

2.0 4.4 Ensure Plus HN®

34 59 Equivalent with

no FO or GLA

2.5 5.1 Pulmocare®

6.8 0 Equivalent with

no FO free days or mortality

~4.5 EPA + DHA 0 Protison No effect on infections, mortality,
(high protein organ failure, duration of mechanical
feed) ventilation or length of stay.

Increased 6-month mortality rate
reported in medical sub-group.

SOFA, Sequential Organ Failure Assessment score.

previous definition separated ALI from ARDS as a non-severe form
(old definition [53]) and the term is still used in preclinical models,
ALl is now defined as mild ARDS (Berlin Definition). Evidence from
preclinical models of ALI/ARDS suggests that nutritional supple-
mentation of EN with omega-3 fatty acids may improve vascular
leakage, pulmonary inflammation and gas exchange and oxygen-
ation [54,55].

Several clinical studies in patients with ALI/ARDS have shown
that continuously-administered EN enriched with EPA, DHA, y-
linolenic acid (GLA, an omega-6 fatty acid present in borage oil) and
anti-oxidants, resulted in improved oxygenation [56—59] and
reduced duration of ventilation [56—58], decreased new organ
failure [56,58,59] and shortened ICU stay [56,58—60] compared
with standard EN. There is little evidence supporting the use of this
formulation in mortality reduction in this patient population, apart
from one study in patients with ARDS secondary to sepsis [58].

In contrast to these positive findings, two studies that utilized
bolus administration of enteral FO in patients with ALI, found no
clinical benefit compared with standard EN [61,62], with one trial
being stopped early due to futility and reporting fewer ventilator-

and ICU-free days, and a non-significant increase in the 60-day
mortality in the FO group [61]. Compared to continuous adminis-
tration, bolus delivery may not enable sufficient incorporation of
EPA and DHA into cell membranes, which may have played a role in
these negative findings. Furthermore, in one trial, whilst under-
feeding occurred in both intervention and control groups, a five-
fold higher protein intake was reported in the control group,
which is likely also to have contributed to the lack of effect seen in
the study group [61,63].

A meta-analysis of 955 patients with ARDS/ALI concluded that
FO-enriched EN had no effect on 28-day mortality [64]. However, a
sensitivity analysis demonstrated that, on exclusion of the two
studies delivering a bolus of FO, there is evidence that supports the
use of continuous administration of EN containing FO in decreasing
mortality in critically ill patients, including patients with ALI/ARDS
[65]. However, ASPEN decided to make no recommendation at this
time regarding the routine use of an enteral formulation charac-
terized by an anti-inflammatory lipid profile (i.e. omega-3 rich FO,
borage oil and antioxidants) in patients with ARDS and severe AL,
given the conflicting data [49].
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3.2. Sepsis

Sepsis is associated with a hyper-inflammatory response which
directly and indirectly causes widespread tissue damage, through
the release of pro-inflammatory mediators, proteases and oxidants
from activated macrophages, as well as vasodilators such as nitric
oxide, which acts as a key mediator in septic shock [66,67].

Whilst no definitive study demonstrates that the use of EN
enriched with omega-3 fatty acids results in improved outcomes
for critically ill patients with sepsis, there does appear to be clinical
benefit when administered in early-stage sepsis. Specifically, in
patients without any sepsis-associated organ failure, administra-
tion of FO-enriched EN resulted in reduction in the progression of
sepsis as well as in respiratory and cardiac failure and a reduced
length of ICU stay compared with a lower lipid-containing EN [68].

3.3. Major abdominal surgery

There is evidence supporting the use of FO-enriched EN in major
abdominal surgery. Peri-operative administration of EN containing
arginine, omega-3 fatty acids and RNA was reported to reduce post-
operative complications and hospital length of stay in malnour-
ished cancer patients undergoing major abdominal surgery versus
standard post-operative EN [69]. Furthermore, immune-
modulating EN (containing omega-3 fatty acids, arginine and
glutamine) administered post-operatively to malnourished pa-
tients undergoing resection for pancreatic/gastric cancer resulted
in a shorter hospital stay, fewer infectious complications and
reduced morbidity and mortality compared to post-operative
standard oligopeptide EN [70].

3.4. Severe trauma

There are few studies assessing the effect of FO-enriched EN
specifically on trauma patients. One study administered pre-
emptively FO-enriched EN (containing EPA, DHA, GLA and anti-
oxidants) to severe trauma patients to assess its effect on the
development of respiratory complications, but found no difference
in the level of oxygenation (PaO,/FiO; ratio), incidence of ARDS/ALI,
duration of ventilation, length of ICU stay or 28-day mortality
compared with a high fat/low carbohydrate EN formulation [71].
However, whilst red blood cell EPA, GLA and omega-3 index (the
sum of EPA plus DHA) increased significantly in the study group,
the optimal omega-3 index required for clinical efficacy failed to be
reached, and this may have contributed to the study's negative
findings. This raises the importance of omega-3 fatty acid baseline
measurement in ICU patients, to determine the extent of incorpo-
ration during supplementation; ultimately such measurements
could be used as a predictor of therapeutic efficacy [72].

3.5. Benefit versus harm of immune-modulating EN in ICU patients

The ESPEN guidelines recommend the use of FO-enriched EN in
subgroups of critically ill patients and there are a number of studies
(discussed above) that show clinical benefit of such EN. However, a
recent study has raised questions concerning the benefit and harm
of immune-modulating EN. Van Zanten et al. conducted a multi-
center trial in 301 mechanically ventilated critically ill patients, and
found that high protein EN enriched with immune-modulating
nutrients (glutamine, omega-3 PUFAs, selenium and anti-
oxidants) had no effect on infections and other clinical endpoints
(mortality, organ failure, duration of mechanical ventilation, length
of stay) compared with standard high protein EN [73]. The study
population comprised medical, surgical and trauma ICU patients.
Sub-group analysis found that medical ICU patients had increased

6-month mortality rates in the enriched EN group suggesting that
in this particular medical population, immune modulating EN
should not be used. Specifically, these results, together with the
increased mortality observed in the REDOXS trial [74] raise con-
cerns over the safety of the glutamine component of the enteral
feed in certain ICU patients.

4. Clinical and biochemical effects of different lipid
emulsions in PN used in critically ill patients

ESPEN guidelines recommend that lipids should be an essential
part of PN for energy and to ensure essential fatty acid provision,
and that intravenous LEs can be administered safely at a rate of
0.7 g/kg up to 1.5 g/kg over 12—24 h [13]. However, the choice of
lipid used in PN may have an effect on clinical outcomes in the
critically ill patient.

4.1. Soybean oil-based lipid emulsions

As discussed in Section 2, pure SO may have a number of less
desirable effects on physiological processes, such as promoting
inflammation and suppressing immune function due to its high LA
content, and a tendency for peroxidation due to its relatively low a.-
tocopherol content. Pure SO has also been associated with a
number of complications including hyperbilirubinemia and intes-
tinal failure associated liver disease (IFALD). SO intake may increase
the lung flow of lymph and pulmonary pressure, and decrease the
partial pressure of oxygen in arterial blood (PaO;) resulting in
respiratory acidosis, and modify lipid metabolism when compared
to second and third generation lipids [75,76].

There is evidence that SO-based PN might exacerbate the post-
surgical inflammatory response in gastrointestinal surgery patients
with severe surgical-related stress, and impair immune function
when compared to standard glucose-containing PN [77]. The pro-
inflammatory effect of the SO emulsion was not so pronounced in
patients with moderate surgery-related stress. An immunosup-
pressive effect was also seen in polytrauma patients receiving early
SO-containing PN, which was associated with higher rates of
infection, reduced T cell function and lowered natural killer cell
activity [78]. This was linked to longer duration of mechanical
ventilation and longer ICU and hospital stay, compared to standard
glucose-containing PN [78]. However, neither of these studies
examined the impact of other lipids to which the effects of SO could
be compared.

The accumulating evidence base has resulted in a recommen-
dation from the German Society for Nutritional Medicine (DGEM)
that pure SO LEs should no longer be used in PN support of crit-
ically ill patients [79]. DGEM will further refine its recommenda-
tion in its updated guidelines and will advise that ICU patients
should receive second or third generation LEs with reduced con-
tent of omega-6 fatty acids (M. Adolph and K. Mayer, personal
communication; [80]). ASPEN suggest withholding SO-based LEs
during the first week following initiation of PN in the critically ill
patient or limiting this to a maximum of 100 g/wk (often divided
into 2 doses/wk) if there is concern about essential fatty acid
deficiency [49].

4.2. Olive oil-based lipid emulsions

0OO0-based LEs appear to be a safe alternative to pure SO-based
LEs, which is reflected in the ESPEN guidance that OO-based PN is
well tolerated in critically ill patients [13]. Using OO-based PN in
adult surgical patients results in better fatty acid status, increased
blood vitamin E concentration, decreased lipid peroxidation and
decreased inflammatory variables [81—83]. However, the evidence
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base for the potential for 00-based LEs to improve clinical outcomes
is not consistent. In surgical ICU patients administered OO-based PN
for up to 28 days post-surgery, there was no difference in glycemic
control, immune function, or inflammatory or oxidative stress
markers compared to SO-based PN [84]. Mortality rate, incidence of
nosocomial infections and acute renal failure, as well as length of
stay, were all reported to be similar between the two groups. Mateu-
de Antonio et al. also found no difference in the number or type of
infections, length of ICU or hospital stay or mortality following an
average duration of 19 days of post-operative OO-based PN
compared to SO in surgical ICU patients [85].

4.3. SO/MCT-based lipid emulsions

There is good evidence that supports the use of SO/MCT LEs
instead of pure SO in critically ill patients. A study in severely
malnourished surgical patients receiving peri-operative total PN
reported a significantly lower incidence of intra-abdominal ab-
scesses with SO/MCT versus SO [86]. There was no reported dif-
ference in other infection rates or mortality. SO/MCT is also
associated with a shorter period of mechanical ventilation in crit-
ically ill patients with COPD compared to SO [87].

4.4. Fish oil-containing lipid emulsions

ESPEN guidelines state that addition of EPA and DHA to LEs has
demonstrable effects on cell membranes and inflammatory pro-
cesses, and that FO-enriched lipid emulsions probably decrease
length of stay in critically ill patients [13]. DGEM will also state that
specific LEs enriched with omega-3 fatty acids may be considered
for administration in critically ill patients (M. Adolph and K. Mayer,
personal communication). There have been a number of studies
investigating the effect of FO-enriched PN in critically ill patients
(see Tables 5—7 for more details about the studies included in the
following sections).

4.4.1. Fish oil-enriched PN in surgical ICU patients

Administration of FO-enriched PN in patients undergoing major
surgical procedures appears to be effective in lowering the post-
operative inflammatory response. For example, suppression of
the pro-inflammatory cytokine IL-6 was reported following
parenteral FO administration in elderly patients undergoing hip
surgery compared to the absence of intravenous FO administration
[88]. Furthermore, perioperative infusion of FO in cardiac surgery
patients significantly increased platelet EPA and DHA and atrial
tissue EPA together with a decrease in IL-6 concentrations, with no
adverse effects reported compared with the saline control [89].
Compared to SO, perioperative FO-enriched PN in surgical ICU pa-
tients decreased post-operative serum IL-6 and whole blood tumor
necrosis factor (TNF)-o. production, and increased monocyte
expression of human leukocyte antigen-DR (a marker of immune
competence) [90]. This effect was associated with a shorter hospital
stay in the FO-enriched PN group, but there was no difference in
infection rate or mortality. Administration of FO-enriched PN
(FO + SO) for 7 d post-gastrointestinal surgery resulted in signifi-
cantly fewer incidences of systemic inflammatory response syn-
drome (SIRS) and significantly shorter hospital stay compared with
SO alone [91]. There was also a trend toward fewer infectious
complications in the FO-enriched PN group. Similar results were
reported for short-term (3 d) pre-operative infusion of FO alone in
gastrointestinal cancer patients awaiting surgery [92]. Adminis-
tration of FO improved the post-operative immune response
(decreased interleukin (IL)-6 and IL-10, decreased leukocyte
oxidative burst, maintenance of monocyte percentage expressing
human leukocyte antigen-DR and CD32, and increased neutrophil

CD32 expression) but had no effect on post-operative infections or
length of ICU or hospital stay [92].

There is also evidence supporting the post-operative adminis-
tration of FO-containing PN in gastric surgery patients in improving
post-surgical immune competence, lowering infection rate and
shortening hospital stay. In elderly patients following colorectal
cancer surgery, administration of PN containing FO + SO for 7 d
resulted in lowered levels of IL-6 and TNF-o and fewer CD8 positive
cells in the bloodstream, fewer infectious complications and in-
cidences of SIRS, and shorter length of hospital stay compared with
SO alone [93]. Furthermore, a study in gastric carcinoma patients
undergoing major abdominal surgery reported that post-operative
PN enriched with FO resulted in fewer infectious complications and
a shorter hospital stay compared with standard PN [94]. A reduced
infection rate was also found in gastrointestinal surgery patients
following 5 days of post-operative PN containing OO/SO enriched
with FO compared to O0/SO alone [95], whilst another study found
a shorter length of hospital stay was associated with FO-enriched
SO/MCT compared to SO alone in gastrointestinal surgery patients
[96]. Decreased length of hospital stay was found to be associated
with 5 days of post-operative administration of SO/MCT/OO/FO-
containing PN compared to SO-based PN in gastrointestinal sur-
gery patients [97]. Furthermore, in liver transplantation patients,
FO-enriched PN given for 7 days post-surgery resulted in a
decreased length of hospital stay compared to SO/MCT [98]. Peri-
operative administration of FO-enriched PN in surgical patients
appears to have a beneficial effect on clinical outcomes as sug-
gested by Heidt et al. from a study in coronary artery bypass graft
patients which resulted in a shortened ICU stay compared to SO-
based PN [99] and Tsekos et al.'s study in gastrointestinal surgery
patients which resulted in decreased mortality, decreased
requirement for mechanical ventilation and decreased hospital stay
compared to SO/MCT-containing PN [100].

These findings are supported by a meta-analysis of 23 studies
including 1502 surgical and ICU patients which investigated the
effects of FO-enriched PN compared with other LEs (SO, SO/MCT,
00/SO) on various clinical outcomes [101]. Whilst the authors
found no effect on mortality, FO-enriched PN resulted in a clinically
and statistically significant reductions in infection rate and in
length of ICU and hospital stay. A smaller meta-analysis of 7 RCTs
also concluded that post-operative administration of FO-enriched
PN in major abdominal surgery patients has a beneficial effect on
post-operative infection rates and length of ICU and hospital stay
[102]. Furthermore, a meta-analysis of five trials performed by
Manzanares et al. found that FO administered either parenterally or
enterally resulted in a non-statistically significant trend
toward reduced duration of mechanical ventilation [103].

In addition to its positive effects on inflammation and immune
function, FO-enriched PN may help to preserve liver function in
critically ill surgical patients. Decreased total bilirubin as well as
serum IL-6, TNF-a. and nuclear factor kappa B was reported in
gastrointestinal surgical patients following post-operative admin-
istration of FO-enriched PN compared with SO/MCT [104]. Rates of
infectious complications and SIRS were comparable between the
two groups. A similar study also utilizing FO-enriched PN versus
SO/MCT in post-operative patients, found similar results, although
statistical significance was not reached for the reductions in liver
dysfunction, infection rate and serum pro-inflammatory cytokines
[105]. In comparison with pure SO, FO/SO (20:80) administered
post-operatively to major abdominal surgery patients resulted in
significantly decreased markers of liver dysfunction (ALT and AST),
bilirubin and lipase [106]. Weight was maintained in the FO-
enriched PN group, as well as a tendency toward shorter ICU stay
in those patients at risk of sepsis [106]. Hence FO-enriched PN
improved liver and pancreas function in this patient population,
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Table 5
Clinically relevant outcomes from including different lipid emulsions in PN in surgical patients.

Study Population Intervention Duration Control Outcome in intervention group
Badia-Tahull et al. 2010 [95] Gastrointestinal surgery 00/SO + FO (ClinOleic® + Omegaven®) 5d 00/SO (ClinOleic®) (n = 14) | Number of infections.
(n=13) Trend toward lower mortality and fewer
incidences of sepsis.
No effect on length of hospital stay
Berger et al. 2008 [206] Abdominal aorta SO/MCT/FO (Lipoplus®) (n = 12) 4d SO/MCT (Lipofundin®) Trend toward shorter ICU and hospital stay
aneurysm surgery (n=12)

Berger et al. 2013 [89]
Grimm et al. 2006 [97]
Han et al. 2012 [105]
Heidt et al. 2009 [99]
Heller et al. 2004 [106]

Jiang et al. 2010 [91]

Klek et al. 2005 [94]

Ma et al. 2012 [108]
Mateu-de Antonio

et al. 2008 [85]
Metry et al. 2014 [109]
Piper et al. 2009 [107]
de Miranda Torrinhas

et al. 2013 [92]
Tsekos et al. 2004 [100]

Umpierrez et al. 2012 [84]

Wachtler et al. 1997 [207]

Wang et al. 2012 [104]
Weiss et al. 2002 [90]

Wichmann et al. 2007 [96]

Wau et al. 2014 [110]

Zhu et al. 2012 [93]

Cardiac surgery
Gastrointestinal surgery
Major surgery
Coronary artery

bypass surgery

Gastrointestinal surgery

Gastrointestinal surgery

Gastrointestinal surgery

Gastrointestinal surgery
Surgery patients
Gastrointestinal surgery

Surgery
Gastrointestinal surgery

Gastrointestinal surgery

Surgery

Gastrointestinal surgery

Gastrointestinal surgery
Surgery

Gastrointestinal surgery

Gastrointestinal surgery

Elderly gastrointestinal
surgery

FO (Omegaven®) (n = 14)

SO/MCT/OO/FO (SMOFlipid®) (n = 19)
SO/MCT + FO (Lipofundin® + Omegaven®)

(n=18)
FO (Omegaven®) (n = 52)

SO + FO (Lipovenoes® + Omegaven®)

(n=124)

SO + FO (Intralipid® 4+ Omegaven®)

(n = 100)

Post-operative FO (Omegaven®™)

(n = 30)

SO/MCT/OO/FO (SMOFlipid®)
(n = 20)
00/SO (ClinOleic®) (n = 23)

SO/MCT/OO/FO (SMOFlipid®) (n = 41)

SO/MCT/OO/FO (SMOFlipid®) (n = 22)
Pre-operative FO (Omegaven®)

(n=31)

Perioperative SO/MCT + FO (Omegaven®™)
(n = 53) vs Post-operative SO/MCT + FO

(Omegaven®) (n = 86)

00/SO (ClinOleic®)
(n=51)

SO/MCT/FO (Prototype of Lipoplus®)

(n=19)

SO/MCT/FO (Lipoplus®)
(n=32)

Peri-operative FO (Omegaven®™) (n = 12)

SO/MCT/FO (Lipoplus®™)
(n=127)

SO/MCT/OO/FO (SMOFlipid®) (n = 20)

SO + FO (Intralipid® + Omegaven®)

(n=29)

3 infusions: 12 hand 2 h
before surgery and
immediately after surgery
5d

7 d post-surgery

~12 h prior to surgery
until ward transfer

5 d post-surgery

7 d post-surgery

Mean duration 9 d

5 d post-surgery
Mean duration 19 d
7 d post-surgery

5 d post-surgery
3 d pre-surgery

2—3 d pre-surgery
followed by 5

d post-surgery

28 d post-surgery

5 d post-surgery

5 d post-surgery
d-1tod5

5 d post-surgery

5 d post surgery

7 d post-surgery

Saline (n = 14)

SO (Lipovenoes®) (n = 14)
SO/MCT (Lipofundin®)
(n=12)

SO (Lipovenoes®™)

(n =50)

SO (Lipovenoes®™)

(n = 20)

SO (Intralipid®) (n = 103)

SO/MCT (Lipofundin®) (n = 30)

SO/MCT + glutamine

(Lipofundin® + Dipeptiven®) (n = 30)

SO/MCT (Lipovenoes®)
(n=20)
SO (Intralipid®) (n = 16)

SO (Intralipid®) (n = 42)

00/S0 (ClinOleic™) (n = 22)
SO/MCT (Lipovenoes®)
(n=32)

SO/MCT (brand un-disclosed)
(n =110)

SO (Intralipid®)

(n =49)

SO/MCT (brand un-disclosed)
(n=21)

SO/MCT (Lipofundin®)
(n=31)
SO (Lipovenoes®) (n = 12)

SO (Intralipid®)
(n = 129)

MCT/SO (Lipovenoes®™)
(n=15)
SO (Intralipid®) (n = 28)

Trend toward shorter length of mechanical
ventilation and shorter ICU stay

| Length of hospital stay

Trend toward less liver dysfunction and fewer
infections

| Post-operative atrial fibrillation

| ICU stay

| Markers of liver dysfunction

| SIRS

| Length of hospital stay

Trend toward fewer infectious complications.
| Infectious complications

| Hospital stay

No difference in post-operative complications,

infections or duration of hospital stay

No difference in number and type of infections,
ICU stay, hospital stay or mortality.

No difference in ventilation, duration of ICU or
hospital stay or mortality

| Markers of liver dysfunction

No effect on post-operative infections, length of
ICU or hospital stay.

Perioperative:

| Mortality

| Number of patients requiring ventilation

| Hospital stay

No change in length of ICU stay

No difference in mortality, infections or length

of stay

Trend toward fewer infections and shorter ICU
stay.

No effect on length of hospital stay

| Total bilirubin

| Length of hospital stay.

No effect on infection rate or mortality.

| Length of hospital stay.

Trend toward fewer infections and decreased
length of ICU stay.

No effect on mortality

No difference in infections, duration of hospital
stay or mortality

| Infectious complications

| SIRS

| Length of hospital stay
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Table 6
Clinically relevant outcomes from including different lipid emulsions in PN in critically ill medical patients.
Study Population Intervention Duration Control Outcome
Barbosa et al. 2010 Critically ill SO/MCT/FO (Lipoplus®) 5d SO/MCT (part of 1 POy/FiO, ratio
[119] with (n=13) LipidSpecial®) | Length of hospital stay for surviving
sepsis/SIRS (n=10) patient sub-group.
No difference in ventilation days, length of
ICU stay or mortality
Barros et al. 2013, Elderly ICU Supplementary FO 6 h infusions/d  No supplementary PN 1 Gas exchange
2014 [208,209] patients (Omegaven®™) for3d (n=25) Trend toward shorter length of mechanical
on EN (n=15) ventilation and decreased mortality.
No effect on liver function
Burkhart et al. 2014  Sepsis FO (Omegaven®) (n = 25) 7d Standard care (n = 25) No difference in duration of ICU stay or
[120] mortality
Edmunds et al. Mechanically FO-enriched lipids (SMOFlipid®, >5d SO-based lipids (various For FO-enriched lipids:
2014 [115] ventilated Lipoplus® or Omegaven®) brands) (n = 223) | Duration of mechanical ventilation
critically ill (n=19) Lipid-free (n = 70) | Length of ICU stay
00/SO (ClinOleic®) (n = 74) SO/MCT (various brands) | Mortality
(n = 65)
Friesecke et al. Medical ICU SO/MCT + FO >6d SO/MCT (Lipofundin®) No effect on infection, duration of
2008 [126] (Lipofundin® + Omegaven®) (n = 60) mechanical ventilation, length of ICU stay or
(n=63) 28-day mortality
Garcia-de-Lorenzo  Severe burns 00/SO (ClinOleic®) (n = 11) 6d SO/MCT (Lipofundin®) No effect on organ dysfunction,
et al. 2005 [210] (n=11) requirement for ventilation, number of
infections, length of ICU or hospital stay or
mortality
Grau-Carmona Medical and SO/MCT/FO (Lipoplus®) (n=58) >5d SO/MCT (Lipofundin®) | Nosocomial infections
et al. 2015 [123]  surgical ICU (n =59) No difference in duration of ventilation,
length of ICU or hospital stay or 6-month
mortality
Gupta et al. 2011 ARDS on EN Supplemental FO (Omegaven®) 14 d Standard EN (n = 30) No difference in duration of ventilation, ICU
[211] (n=31) stay or hospital stay or mortality
Hall et al. 2014 Critically ill FO (Omegaven®) 14 d or to Standard care (N = 30) | SOFA
[118] with sepsis (n=30) discharge | Mortality in less severe sepsis subgroup
No effect on length of stay
Khor et al. 2011 Severe sepsis FO (Omegaven®) 5d Saline (n = 13) No effect on length of ICU or hospital stay
[121] (n=14)
Mayer et al. 2003 Septic shock FO (Omegaven®™) 5d SO (Lipoven®) (n = 11) No effect on mortality or length of
[122] (n=10) mechanical ventilation
Mayer et al. 2003 Septic shock FO (Omegaven®) 10d SO (Lipoven®) (n = 5) Trend toward shorter ventilation time.
[117] (n=25) No mortality in either group
Sabater et al. 2008 ARDS SO/MCT/FO (Lipoplus®) (n=8) 12h SO (Intralipid®) (n = 8) No effect on gas exchange or mortality
[212]
Wang et al. 2008 Acute SO + FO 5d SO (Lipovenoes®) (n = 20) | Requirement for renal replacement
[116] pancreatitis (Lipovenoes® + Omegaven®) therapy
(n = 20) 1 Oxygenation index
Trend toward fewer infections and shorter
length of ICU and hospital stay
Zhu et al. 2012 [98]  Liver FO (Omegaven®) 7d SO/MCT (20% emulsion | Length of hospital stay
transplantation (n = 33) post-surgery with a 1:1 ratio)

(n=33)

SOFA, Sequential Organ Failure Assessment.

and may have been a factor in reducing ICU stay for patients at risk
of sepsis. The newer composite SO/MCT/OO/FO (30:30:25:15) LE
has also shown a liver-protecting effect in post-operative patients
requiring PN, resulting in significantly lower ALT, AST and o-GST
compared with 00/SO [107].

This liver-protective effect has also been demonstrated in liver
transplantation patients, whereby post-operative FO-enriched PN
lowered ALT and prothrombin time as well as length of hospital
stay compared with PN containing SO/MCT [98]. Improvement in
liver injury and a reduction in the number of infectious morbidities
were also reported for the FO-enriched PN group.

It is important to note that not all clinical studies in surgical ICU
patients have been positive. Parenteral SO/MCT/OO/FO adminis-
tered to gastric cancer surgical patients resulted in no difference in
efficacy, safety, tolerance or clinical outcomes (including post-
operative complications) compared with SO/MCT [108]. Metry
et al. also found no difference in ventilation requirement, duration
of ICU or hospital stay or mortality following 7 days of post-
operative administration of parenteral SO/MCT/OO/FO compared

to SO alone [109]. Furthermore, Wu et al.'s study in gastrointestinal
surgery patients found no difference in inflammatory markers (C-
reactive protein, IL-6, IL-10, TNF-a and transforming growth factor
B1) or markers of oxidative stress compared with SO/MCT [110].

A meta-analysis of 6 RCTs (306 surgical patients) did conclude
that SO/MCT/OO/FO was associated with lower hepatic enzymes,
low-density lipoprotein, triglycerides and C-reactive protein
following post-operative administration compared with SO, but
found no statistically significant changes compared with SO/MCT
[111]. There was no difference in adverse events or length of hos-
pital stay compared with either SO or SO/MCT.

Eicosanoids are involved in the control of platelet aggregation
and so influence blood clotting and bleeding time. TXA; and
prostacyclin (PGI,) are both produced from the omega-6 PUFA ARA.
TXA; is pro-aggregatory and PGI; is anti-aggregatory. EPA from FO
decreases the ARA content of the platelet membrane [112], so
decreasing production of both TXA; and PGI, [112]. Instead, pro-
duction of the EPA-derived eicosanoids TXAs, which is a weak
platelet aggregator, and PGI3; which is a potent inhibitor of platelet
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Table 7

Clinical and biochemical outcomes from including different lipid emulsions in PN in pediatric patients.
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Study Population Intervention Duration Control Outcome in intervention group
Beken et al. 2014 Very low birth SO/MCT/OO/FO Mean: 14 d SO (Intralipid®) | Retinopathy of prematurity
[159] weight preterm (SMOFlipid®) (n = 40) No difference in morbidity or mortality
infants (n = 40) outcomes
D'Ascenzo et al. Very low birth SO/MCT/OO/FO 7 d following birth SO (Intralipid®) 1 Plasma EPA and DHA
2014 [160] weight preterm (SMOFlipid®) (n=32) | Plasma ARA
infants (n = 30) 1 Serum triglycerides, plasma
phospholipids, free cholesterol
No difference in weight.
Deshpande et al. Preterm neonates SO/MCT/OO/FO 7d 00/SO (ClinOleic®) 1 RBC EPA
2014 [161] (SMOFlipid®) (n=17) 1 Vitamin E
(n=17) | F, isoprostanes
Larsen et al. 2012 Infants undergoing SO/MCT/FO (Lipoplus®) 1-4 d before and SO (Intralipid®) | TNF-o
[166] open heart surgery (n=16) 10 d post-surgery (n=16) No difference in clinical outcomes
Larsen et al. 2015 Infants undergoing SO/MCT/FO (Lipoplus®) 3 d pre-op and 5 d SO (Intralipid®) 1 Plasma phospholipid EPA
[165] open heart surgery (n=16) post-op (n=16) | Plasma LTB4 and lymphocytes
Pawlik et al. 2013 Very low 00/SO + FO 28d 00/SO (ClinOleic®) 1 Plasma DHA
[162] birthweight (ClinOleic® + Omegaven®) (n =70) | Cholestasis
preterm infants (n = 60)
Savini et al. 2013 Very low SO (Intralipid®) (n = 30) vs 21d — Lowest plasma phytosterols in
[163] birthweight SO/MCT (Lipofundin®) SMOFlipid® group
preterm infants (n = 30) vs SO/MCT/FO No difference in liver function
(Lipidem®) (n = 27) vs
00/SO (ClinOleic®) (n = 29)
vs SO/MCT/OO/FO
(SMOFlipid®) (n = 28)
Vlaardingerbroek Very low birth SO/MCT/OO/FO Median: 11 d SO (Intralipid®) 1 Plasma EPA and DHA
et al. 2014 [158], weight infants (SMOFlipid®) (n=48) 1 Weight gain
Roelands et al. (n = 48) No difference in ARA.

2016 [134]

Wang et al. 2016
[164]

Preterm infants

00/SO (ClinOleic®) (n = 50) 14d

No differences in morbidity, mortality
or other biochemical outcomes

No difference in neurodevelopmental
outcome

| Direct bilirubin

Differences in bile acid composition
No difference in clinical outcome

SO (Intralipid®)
(n = 50)

aggregation occurs [112]. Thus, FO results in decreased platelet
aggregation [112], which can increase bleeding and time to clotting.
With regard to this theoretical increased risk of bleeding with FO-
based PN, studies to date have shown that FO is safe to include in
PN regimens and does not increase risk of bleeding. Acute pre-
treatment with omega-3 PUFAs in coronary artery bypass graft
patients non-significantly affected the activity of platelets and did
not influence postoperative blood loss [113].

Based on the evidence available and according to the new ESPEN
guidelines on clinical nutrition in surgery, postoperative PN
including omega-3-fatty acids should be started only in malnour-
ished patients who cannot be adequately fed enterally and, there-
fore, require PN [114]. If PN is required post-operatively in the ICU,
2nd or 3rd generation lipid emulsions may be administered, and in
the case of surgical complications, FO-containing PN is
recommended.

4.4.2. Fish oil-enriched PN in non-surgical ICU patients

Compared to SO and SO/MCT, FO-enriched PN may provide
clinical benefits for a wide range of ICU patients. In mechanically
ventilated critically ill patients, FO-enriched PN resulted in a
shorter duration of mechanical ventilation and a faster time to ICU
discharge compared to lipid-free or SO-based PN [115]. In patients
with acute pancreatitis, administration of FO-supplemented PN
resulted in significantly decreased CRP in addition to better
oxygenation index and fewer days of continuous renal replacement
therapy compared with SO alone [116].

Clinical studies in patients with sepsis have shown that paren-
teral administration of either omega-6 or omega-3 fatty acids re-
sults in elevated concentrations of the respective free fatty acids

several-fold, as well as appearance of the respective eicosanoids
[117]. Hence PN containing FO should theoretically lead to
increased levels of inflammation-resolving resolvins and associated
clinical benefits. The latter is supported by some trials. Compared to
standard care, FO administered to patients with sepsis resulted in a
significant reduction in new organ dysfunction and lower
maximum C-reactive protein concentrations [118]. A significant
reduction in mortality was observed for patients with less severe
sepsis. Furthermore, FO-enriched PN (SO/MCT/FO 50:40:10)
administered to patients with sepsis or SIRS for 5 days increased
plasma EPA levels, decreased plasma IL-6, improved oxygenation
(PO, /FiO ratio) and reduced length of hospital stay compared to
SO/MCT [119]. However, several studies have failed to show any
clinical benefit of FO-enriched PN in cases of sepsis or septic shock
compared to either standard care, saline or SO-based PN
[117,120—122], although one of these studies did find a non-
statistically significant trend toward shorter ventilation time [117].

FO-enriched PN administered to critically ill medical and sur-
gical patients may result in a significant reduction in the number of
nosocomial infections compared to SO/MCT [123]. Time free of
infection was also significantly longer in the FO-supplemented
group, although there was no effect reported for ICU or hospital
stay or 6-month mortality rate.

This lack of effect of FO-enriched PN on mortality rate compared
to standard PN is confirmed by meta-analyses of 6 RCTs [124] and of
8 RCTs [125] in critically ill adults, the latter also finding no dif-
ference in infectious complications or ICU length of stay. There was
weak evidence of a reduction of hospital length of stay associated
with FO-enriched PN, but this was strongly influenced by one small
study [125].
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Not all trials investigating the use of FO-enriched PN in critically
ill patients report positive outcomes. Administration of FO-
enriched PN to medical ICU patients (with and without SIRS) had
no effect on inflammatory markers (IL-6), incidence of infection,
duration of mechanical ventilation, length of ICU stay or 28-day
mortality compared with SO/MCT [126]. The study included
severely ill patients that were at different stages of the inflamma-
tion/inflammation resolution cycle; hence the intervention may
have been administered after termination of the initial inflamma-
tory process in some patients. Timing of omega-3 fatty acid
administration is important if hyper-inflammation is to be pre-
vented, and from previously discussed studies, administration prior
to commencement of inflammation is likely optimal. Furthermore,
dosage levels of the administered FO also play a critical role in
whether the intervention provides clinical benefit. A study inves-
tigating the dose-dependent effects of FO-enriched PN in a range of
ICU patients found that the most favorable effects on survival,
infection rates and length of hospital stay occurred when paren-
teral FO was administered between 0.1 and 0.2 g/kg/d. A 26% lower
antibiotic demand was associated with parenteral administration
of FO between 0.15 and 0.20 g/kg/d [127].

5. Lipids and PN in pediatric patients

The joint European Society for Paediatric Gastroenterology,
Hepatology and Nutrition (ESPGHAN) and ESPEN guidelines on PN
in pediatrics recommend that in small preterm infants, when EN is
not possible, PN including lipids should be initiated as soon as
possible after birth [128]. Intolerance to full EN is common in
preterm infants, and results in a high incidence of postnatal growth
failure.

Surveys of current practice in neonatal ICUs in Europe and the
US show that there is a wide range in the timing and initial dose of
lipid administration [129]. In the UK and Ireland, whilst a greater
proportion of preterm infants start PN within 48 h, around one
quarter of preterm infants still are not given PN until or after day 3
[130]. When considering a role for PN and lipids in preterm infants,
the potential to improve neurodevelopmental outcomes should not
be overlooked: DHA is critical in neurodevelopment with the brain
comprising 60% of lipid, and with >80% of brain DHA accumulating
between 26 and 40 weeks gestation [131].

In preterm infants, there is concern regarding early lipid-
containing PN and the risk of complications such as sepsis, bron-
chopulmonary dysplasia (BPD), hyperbilirubinemia, liver disease,
persistent pulmonary hypertension of the newborn (PPHN) and
thrombocytopenia. However, a meta-analysis of 14 studies inves-
tigating the effect of early (<2 d) parenteral lipid in very low birth
weight (VLBW) infants, found no difference in sepsis, BPD, growth
or mortality rates compared to later (>2 d) administration [132].
This is supported by a later RCT comparing lipid-containing PN
administered from birth to VLBW infants with standard PN from
birth with lipids administered 2 d later, which reported no differ-
ence in growth, biochemical or clinical outcomes between the
groups [133,134].

There is also a risk of hypertriglyceridemia associated with lipid
administration in preterm infants, due to limited fat and muscle
mass and thus decreased hydrolytic capacity from lipoprotein
lipase. Whilst there is no specific indicator of lipid tolerance, as
plasma triglyceride levels indicate plasma clearance, monitoring of
plasma triglycerides is recommended. ESPGHAN recommends a
safe triglyceride level of 2.85 mmol/l (250 mg/dl) in preterm infants
and newborns [128], whilst ASPEN recommends 2.26 mmol/l
(200 mg/dl) [135]. However, in one trial, hypertriglyceridemia of
>3 mmol/l (>265 mg/dl) was not associated with neonatal mor-
bidities [133].

IFALD is associated with chronic (>14 d) total PN (TPN), and
incidence is directly related to TPN duration. Short bowel syndrome
(SBS) accounts for 1.4% of all deaths for children under 4 y and is
primarily related to the development of IFALD which is identified
through biochemical parameters such as direct bilirubin levels
>2 mg/dl (34 umol/l), increased GGT, ALT, and serum bile acids
[136,137]. Some 40—60% of patients with short bowel syndrome on
TPN develop cholestasis, and a study published in 2005 reported
that the mortality rate is approximately 78% if bilirubin remains
>3 mg/dl for 3 months, and increases to 90% if cholestasis is diag-
nosed and there is no weaning off TPN within a year of diagnosis, or
failure to receive a liver transplant [138]. A Pediatric Intestinal
Failure Consortium (PIFCon) retrospective analysis of clinical
outcome data for infants with intestinal failure reported that of a
cohort of 272 infants (<1 y old and on prolonged TPN for >2
months), the mortality rate was 27% and intestinal transplantation
rate was 26% [139].

Besides prematurity and prolonged TPN use, other risk factors
for IFALD include lack of enteral nutrition, multiple operative pro-
cedures, sepsis or inflammation, and possibly also nutrient de-
ficiencies or toxicities associated with other components in lipid PN
[140,141]. Preventative/treatment measures for IFALD may include
cycling PN, feed advancement, prevention and aggressive treat-
ment of sepsis, lipid reduction to <1 g/kg/d, altering the lipid being
used in PN (see below), elimination of hepatotoxic medications,
reduction of bacterial overgrowth, use of the bile acid ursodiol,
reduction of transfusions and minimizing surgical procedures if
possible [137,142—151], although the evidence in favor of some of
these is weak [152]. Whilst IFALD/cholestasis may be reversed with
elimination/reduction of lipids, cholestasis may be progressive
whilst on PN. It may lead to liver cirrhosis, liver failure, liver
transplant or death [153].

Regarding the choice of LE in PN for pediatric patients, it is
suggested that high levels of omega-6 PUFAs and phytosterols
found in SO can be hepatotoxic and lead to IFALD [154]. Phytos-
terols have been shown to antagonize the farnesoid-X-receptor
(FXR) [155] which normally acts to suppress hepatic lipogenesis
and bile acid synthesis. Thus, in the presence of phytosterols, those
processes continue uncontrolled leading to both fatty liver and
cholestasis. FO-containing PN may have a protective effect against
IFALD due to the lower phytosterol content, higher omega-3 PUFA
content, and higher a-tocopherol content, and to direct regulation
of bile flow through eicosanoid-mediated mechanisms [156]. In
pediatric patients with IFALD whose cholestasis was resolved with
use of FO, decreased direct bilirubin levels and markers of liver
injury were reported together with improvement in hepatic func-
tion [156,157]. However, some of these studies compared a group of
infants receiving FO-based PN with an historic control group.
Furthermore, some studies used pure FO LE rather than a lipid mix.
Finally, many studies have lowered the lipid dose being used
(generally to 1 g/kg/d) at the same time as introducing FO-
containing PN. Thus, it is difficult to disentangle the effects of the
lower lipid dose from those of an alternative lipid mixture.

With regard to other potential clinical benefits of FO-enriched
PN in preterm infants, an RCT in VLBW infants administered SO/
MCT/OO/FO reported a significant increase in weight gain and
increased plasma EPA and DHA (but no difference in ARA)
compared to SO-based PN [134,158]. However, there were no dif-
ferences in morbidity, mortality or biochemical outcomes between
the two groups. Several studies concur regarding these outcomes
with multi-component lipid PN versus other LEs [158—164].

FO-enriched PN given to infants undergoing major cardiac sur-
gery may help ameliorate the post-operative inflammatory
response. A study investigating the effects of parenteral SO/MCT/FO
(40:50:10) given pre- and post-operatively to infants undergoing
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open heart surgery reported a lower inflammatory response post-
surgery compared with SO alone [165]. Specifically the FO con-
taining LE resulted in higher plasma phospholipid EPA and
decreased plasma LTB4 and lymphocytes. An earlier trial also found
significantly lower TNF-o concentrations and a positive association
with length of hospital stay in the SO/MCT/FO group compared
with SO when given perioperatively in infants undergoing cardiac
surgery [166].

In summary, for preterm infants, lipids given directly following
birth at 2 g/kg/d appear safe according to short term studies.
Emulsions with a mix of lipid sources including FO may offer
benefits over SO alone, although long-lasting positive effects need
to be proven.

6. Economic considerations for fish oil-enriched lipids in the
ICU

Pradelli et al. performed an analysis of the cost-effectiveness of
SO/MCT/OO/FO in surgical and ICU patients in four European
countries (Italy, Germany, France and the UK) [167]. The analysis
considered costs associated with nutritional treatment, ICU stay,
general ward stay and nosocomial infections as well as the benefits
of FO-containing PN on infection rates and length of stay. The study
concluded that the treatment costs associated with FO-enriched PN
were completely offset by the savings made from the subsequent
reduction in hospital stay and reduced antibiotic costs. Hence, FO-
containing PN is cost-effective and beneficial for both ICU and non-
ICU patients in hospitals in Italy, Germany, France and the UK
compared with standard PN.

7. Future directions

7.1. Effects of omega-3 fatty acids in preclinical models of acute
neurological injury

Spinal cord injury (SCI) is associated with significant social and
healthcare burden [168]. In the acute phase following SCI, the initial
lesion expands and results in a secondary injury wave, reflected in
the progressive loss of gray matter within the spinal cord [169,170].
Secondary injury pathophysiology is characterized by activation of
inflammatory pathways, increased glutamate release and vascular
damage leading to ischemia [171]. Preclinical studies involving
rodent compression and hemisection SCI models, at thoracic and
cervical levels, have demonstrated that acute DHA injection in the
range of 250—500 nmol/kg body weight, with or without sustained
dietary supplementation, has a neuroprotective effect and im-
proves neurological outcomes [172—177]. Specifically, DHA
administration results in a reduced lesion size and less inflamma-
tion (including TNF-o, expression), reduced neuronal, oligoden-
drocyte and neurofilament loss, reduced macrophage/microglia
recruitment and activation, and less apoptotic death, and this is
correlated with an improved locomotor recovery [172—176]. DHA
appears to enhance motor function recovery via its effect on the
serotonin fiber input on motor neurons [177]|. DHA also has a
positive effect on synaptic remodeling and may enhance synapto-
genesis. Immunoreactivity of synaptophysin, a synaptic vesicle
protein, was found to be less reduced after injury in DHA-treated
animals compared with controls, in a rat model of cervical SCI [177].

With regard to traumatic brain injury (TBI), in the US there are
1.5—2 million new cases per year, accounting for 30% of injury-
related deaths, with an annual cost of $25 billion [178]. TBI,
particularly repetitive, increases susceptibility to Alzheimer's dis-
ease, as evidenced in murine models, where repetitive TBI resulted
in increased amyloid p-deposition, isoprostanes and cognitive
impairment [179]. However, acute DHA administration (500 nmol/

kg body weight) 30 min after controlled cortical impact can
improve spatial memory [180]. In terms of the mechanisms
involved, TBI and SCI are both associated with glutamate overflow
which may be controlled via omega-3 PUFA through inhibition of
voltage-sensitive Na® and Ca?* channels and activation of K*
channels [181].

DHA may also be a future treatment option for patients with
stroke. In rodent ischemic stroke models, DHA administration,
acting via biosynthesis of neuroprotectin D1 (aka protectin D1),
reduces astrocyte and neuronal cell death and promotes cell sur-
vival, resulting in significantly reduced total infarct volume
[182,183].

Preclinical rodent models have also shown that the improved
neurological outcome following acute DHA injection is not only
associated with neuronal survival. Indeed, controlled cortical
impact models in mice have demonstrated that ablation of astro-
cytes resulted in decreased neuronal survival, and increased neu-
roinflammation [184]. Hence, a subset of astrocytes appears to have
a role in aiding neuronal survival and reducing inflammation after
brain injury [185]. It has also been demonstrated that after mild
compression injury in mice, heterogeneity of microglia at the site
develops alongside a coordinated microglial response [186].
Following TBI, there is upregulation of a sub-population of micro-
glia that express galectin-3/MAC-2 lectins that are involved in
myelin degradation [187]. Hence the acute DHA administration
appears to play a role in modulating this complex glial response,
e.g. by increasing these new and proliferating microglia and as-
trocytes, and ultimately resulting in decreased lesion volume.

In humans, following a single TBI, there is evidence of persistent
neuroinflammation and microglial activation for up to 17 years
afterward [188,189]. This suggests that interventions using DHA
may be appropriate for a longer time period following TBI rather
than just in the acute phase.

In summary, preclinical models of SCI and TBI suggest that DHA,
if administered in the acute phase and for some time afterward,
may help to limit progression of neurological injury and improve
neurological outcomes.

7.2. Effects of omega-3 fatty acids in preclinical models of sepsis
and tissue injury

Omega-3 fatty acids have been shown to have a protective effect
against edema formation in a model of septic lung failure due to the
increased generation of LTBs_ In perfused rabbit lung treated with
Escherichia coli hemolysin, EPA suppressed vascular permeability
and shifted leukotriene formation from the 4-series to the 5-series
compared to ARA [190]. Hence, the composition of LEs used in PN
may influence microvascular changes induced by bacterial toxins.

The favorable lipid mediators formed from EPA may also have a
beneficial effect on pulmonary hypertension compared to those
formed from ARA. In a rabbit lung model of acute pulmonary hy-
pertension investigating the pulmonary vasoconstrictor potencies
of EPA and ARA, EPA resulted in an almost 2-fold decrease in pul-
monary hypertension compared to ARA [191]. EPA is metabolized
to PGI3 and TXA3 and it may be that the dominant presence of TXA3
mediates EPA's weaker pulmonary vasoconstrictor effects,
compared with ARA and ARA-derived TXA,.

In inflammatory conditions, particularly systemic inflammation
with sepsis and multi-organ failure, the transmigration of mono-
cytes through the vascular endothelium is an important contrib-
uting factor to the pathogenesis of the condition. In an in vitro
experiment investigating the effect of different free fatty acids on
TNF-o activated human umbilical vein endothelial cells, EPA and
DHA (but not ARA), resulted in markedly suppressed platelet-
activating factor (PAF), resulting in reduced monocyte rolling and
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adherence, with DHA being more potent than EPA [192]. Previous
work has suggested that the binding of endothelial PAF and the PAF
receptor on leukocytes are responsible for the adhesive interactions
of monocytes followed by their activation [193]. This mechanism
involving PAF may be one factor responsible for the inflammation-
dampening effect of EPA and DHA.

In a murine model of acute inflammation, pre-infusion of FO-
rich LE resulted in reduced leukocyte invasion and reduced TNF-a.
production in the alveolar space following intra-tracheal LPS
challenge, compared with SO or saline [194]. In PAF-receptor
knock-out mice, the different effects of FO and SO were far less
marked. This supports the hypothesis that the anti-inflammatory
effect of FO is dependent on PAF/PAF-receptor linked signaling.
Similarly, in a murine model of ARDS, pre-infusion with FO-
containing LE resulted in greater reduction of leukocyte invasion
and protein leakage into the alveolar space than either SO or SO/
MCT [195]. These results suggest that the reduction in the pro-
portion of omega-6 PUFA administered may help improve lung
injury.

Extensive lymphocytic apoptosis is a hallmark feature of late-
stage sepsis, and can be clearly seen in the spleen as well as
other organs [196]. In a murine model of endotoxin-induced ALI,
00 pre-infusion resulted in less mortality compared with SO pre-
infusion [197]. Fewer lymphocytes were observed in the spleen in
the SO group which appeared to be due to increased apoptosis and
necrotic cell death, although both LEs resulted in increased lym-
phocytic apoptosis via intrinsic pathways. Hence, OO-based LEs
may have fewer deleterious immunological effects than SO, at least
in murine models of ALL

In critically ill patients, a reduced flow of blood to the gut can
lead to intestinal ischemia, decreased barrier function and
increased bacterial translocation. A rat endotoxin model investi-
gating the effects of different lipid pre-infusions on microcircula-
tion and intestinal barrier function reported improved blood flow
to the intestine and less viable bacteria detected in the mesenteric
lymph nodes and liver following endotoxin challenge with FO-
supplemented SO/MCT compared with SO/MCT or SO alone [198].
The reduction in viable bacteria is thought to be related to
improved killing of translocated bacteria rather than a reduction in
translocation.

In healthy human volunteers, infusion of FO blunted the
endotoxin-induced inflammatory response including suppression
of monocyte generation of pro-inflammatory cytokines (TNF-a, IL-
1, IL-6 and IL-8), and inhibition of monocyte-endothelium adhesion
and transendothelial monocyte migration compared to SO [199].
Decreased fever in response to LPS, reduced TNF-o synthesis and a
reduced LPS-induced neuroendocrine response (ACTH and
noradrenaline) have also been observed with FO infusion in
humans [200]. Similar protective results have been found after pre-
infusion of either SO- or FO-based lipid emulsions and subsequent
LPS-inhalation [201].

In summary, from preclinical models, different lipids may
impact the inflammatory response of critically ill patients. SO LEs
may exert negative effects in terms of increased pro-inflammatory
cytokines and immune depression, such as lymphocyte destruc-
tion, whereas FO appears to dampen the inflammatory response
and improve pre-clinical outcomes.

8. Conclusion

Lipids are an important component of enteral and parenteral
nutrition and provide essential fatty acids, a concentrated source of
calories and building blocks for cell membranes. Whilst LA-rich
vegetable oil-based enteral and parenteral nutrition is still widely
used, newer lipid components such as MCTs and OO appear to be

safer and better tolerated than pure SO. FO-enriched enteral and
parenteral nutrition appears to be well tolerated and confers
additional clinical benefits, particularly in surgical ICU patients, due
to its anti-inflammatory and immune-modulating effects. Whilst
the evidence base is not conclusive, there appears to be a potential
for FO-enriched nutrition, particularly administered peri-
operatively, to reduce the rate of complications and ICU and hos-
pital stay in surgical ICU patients, as well as to improve complica-
tions such as IFALD associated with SO-based LEs. The evidence for
FO-based nutrition in non-surgical ICU patients is less clear
regarding its clinical benefits and additional, well-designed large-
scale clinical trials need to be conducted in this area.

Whilst FO-based PN can be more expensive than other available
LEs, cost-benefit analysis has shown that the treatment costs for
ICU patients are completely offset by the savings made from the
subsequent reduction in hospital stay and reduced antibiotic costs.

Future directions regarding FO-based enteral and parenteral
nutrition may include its use in TBI and SCI, as well as in compli-
cations relating to sepsis and tissue injury, following the success of
such interventions in preclinical models.
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